Start—to—End Simulation of SASE FELs from the Gun through the Undulator

M. Borland¹, Y.–C. Chae¹, P. Emma², J.W. Lewellen¹, V. Bharadwaj², W.M. Fawley³, P. Krejcik², C. Limborg², S.V. Milton¹, H.–D. Nuhn², R. Soliday¹, M. Woodley²

¹Argonne National Laboratory ²Stanford Linear Accelerator Center ³Lawrence Berkeley National Laboratory

Outline

- Why do start-to-end (S2E) simulations?
- Simulation methods and codes
- Example: S2E simulation of LCLS
- What's next?
- Conclusions

Simplified SASE FEL Schematic

Simulation Methodology

- We *do not* want to write a new, all–encompassing S2E code.
- Need a flexible and robust method of using existing codes together
- Automate the preparation, execution, sequencing, and analysis of simulations.
 - Reduce impact of human error
 - Investigate more cases with less work
 - Model effects of errors and jitter

Photoinjector Simulation

- We used LANL's PARMELA (V3)
 - Space charge
 - Beam file input
- Well-accepted code, but has limitations
 - No built-in jitter capability
 - Doesn't simulate wakefields or CSR
 - Unavailable for UNIX (Windows only)
- For jitter runs, scripts were used to perturb selected values in the input file

Linac Simulation

- We end the photoinjector simulations at 30 MeV for LEUTL and 150 MeV for LCLS.
- ANL's elegant, a 6–D tracking code, is then used
 - Fast 1–D transient CSR simulation
 - Longitudinal and transverse wakes
 - Optical aberrations
 - Flexible, built—in jitter simulation and correction algorithms

FEL Simulation

- Used 3–D, time–dependent code GENESIS
 (S. Reiche) for FEL simulations
- How to transform accelerator code output into FEL code input?
 - projected or whole-beam analysis is misleading
 - "typical" analysis slice is better
 - multislice analysis is best
- GENESIS' BEAMFILE capability supports multislice analysis

Combining Simulations

- Using files for data transfer is an obvious choice, but rarely a robust one
- Use ANL's Self Describing Data Sets (SDDS) file protocol for uniform, robust data transfer
 - very stable and well supported
 - used for many complex projects already
- elegant and GENESIS are SDDS-compliant
- PARMELA requires a (fragile) translator

SDDS Advantages

- SDDS files are flexible and can be easily augmented.
- Users of files are unaffected by augmentation.
- SDDS files are self-documenting
- SDDS Toolkit programs provide generic, flexible pre– and post–processing.

Orchestrating Simulations

- We use scripts to orchestrate all these programs
- Scripts allow
 - automated job setup and execution
 - automated job postprocessing
 - automated transfer of data between simulations
 - easy repetition and variation
- Such orchestration is possible only with commandline—driven programs

Simulation Diagram

LCLS Schematic

S2E Simulations of LCLS

- 100K particles tracked through PARMELA and elegant
- Bunch occupies ~136 slippage lengths
- Use "steady-state" mode in GENESIS with 136 slices
- Slice results combined to give averages and totals for FEL performance

Longitudinal Phase Space at Undulator Entrance

Slice Analysis

Slice Analysis

Slice Analysis

Predicted FEL Performance

• Results are averaged/summed the central 80% "core slices"

CSR ?	Current (kA)	Bunch length (ps)	Frac. mom. spread (10^{-4})	Norm. x emit. (µm)	Gain length (m)	Output power (GW)
no	3.3	0.17	0.49	0.66	3.2	10.7
yes	3.5	0.18	1.6	1.2	5	3.5

- Only a fraction of the slices saturate when CSR is included
- Bunch compressor design being revisited to reduce CSR problems.

Output Power Along the Bunch

S2E Jitter Simulations of LCLS

- It isn't enough to look at the ideal behavior, we must look at the behavior with errors
- "Jitter" refers to any error that we can't correct with alignment, tuning, feedback, etc.
- We simulated jitter, including
 - drive laser timing and energy
 - photoinjector and linac rf voltages and phases
 - bunch compressor power supplies

Jitter Levels for LCLS

Quantity	Rms Jitter Level
laser phase	0.5 deg-S
laser energy	1.00%
gun phase	reference
gun voltage	0.1%
L0 phase (1)	0.1 deg-S
L0 voltage (1)	0.10%
L1 phase (1)	0.1 deg-S
L1 voltage (1)	0.10%

Quantity	Rms Jitter Level
X-band phase (1)	0.3 deg-X
X-band voltage (1)	0.25%
L2 phases (28)	0.07 deg-S
L2 voltages (28)	0.07%
L3 phases (48)	0.07 deg-S
L3 voltages (48)	0.05%
BC1 dipoles (2)	0.02%
BC2 dipoles (2)	0.02%
DL dipoles	0.01%

Predicted Jitter of LCLS FEL

CSR?	Current (kA)	Frac. mom. spread (10 ⁻⁴)	Norm. x emit. (µm)	Gain length (m)	Output power (GW)
no	3.3±0.2	0.49 ± 0.04	0.66 ± 0.01	3.2±0.1	10.3±0.9
yes	3.5±0.2	1.5±0.1	1.2±0.04	5.0±0.2	2.9±0.3

- 232 seeds without CSR and 149 with CSR
- Jitter in FEL output is roughly 10%

Jitter Correlation Plots (No CSR)

Start-to-End Simulations of SASE FELs

FEL2001, Darmstadt

Jitter Correlation Plots (CSR)

Start-to-End Simulations of SASE FELs

FEL2001, Darmstadt

Correlation Analysis

• Computing correlation coefficients allows determining causes of power variation

Quantity	Responsibility (%)		
L1 phase error	25%		
Photoinjector beam arrival time	17%		
Photoinjector output charge	15%		
Laser phase error	13%		
X-band phase error	12%		

• This type of analysis was used to refine the jitter specifications

Computing Resources

- 64 Sun UNIX workstations, linked by Grid Engine distributed queueing system.
- 6 PCs running Windows, linked by my feet.
- SDDS system well suited to concurrent execution on many computers.

Plans for S2E

- Add a drive laser model
 - realistic spatial/temporal profiles
 - pulse–to–pulse profile jitter
- Include cathode nonuniformity
- Include simulation and correction of static errors
- Adopt a UNIX photoinjector code (ASTRA?)
- Add improved CSR models
- Repeat with improved LCLS designs

Conclusions

- Existing programs can be combined in a robust fashion for large–scale S2E simulations
- Use of SDDS and scripts makes it work smoothly and reliably
- Stability requirements for LCLS are difficult but achievable
- Predictions for LCLS are motivating design changes